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Beyond quantum-classical analogies:
high time for agreement?
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Outline

Brief introduction to quantum-classical analogs

Focus on the analogy between Lorenz-Mie (LM or Mie) scattering
and quantum-mechanical (qm) wave scattering

Application to the blackbody problem
(can we conceive a classical route to the blackbody?)

Conclusions



Quantum physics emerges from classical thinking

(1900 blackbody, 1912 vacuum field)
Planck borrowed from Boltzmann the idea about classical discretization of volume and
phase space to calculate thermodynamic functions (e.g., energy, entropy)
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(1925 matrix mechanics)
Born, Heisenberg and Jordan were inspired by the connection to the vibrating string
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Quantum harmonic oscillator
(after quantization procedure)

(1926 wave mechanics)
Schrodinger worked on the optical analogy to achieve an interpretation of the de
Broglie postulate about matter waves

Maxwell eq. of a free em field Schradinger eq. of a massive particle
V2A+k2A=0 V2 +[2m(E -V )/ n2 |y =0



Quantum physics in classical fashion
A lot of papers have been written on quantum-classical analogies

week ending

PRL 102, 243601 (2009) PHYSICAL REVIEW LETTERS 19 JUNE 2009

Classical Analogues of Two-Photon Quantum Interference

R. Kaltenbaek, J. Lavoie, and K.J. Resch*
Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, Canada, N2L 3G1
(Received 21 January 2009; published 15 June 2009)

Chirped-pulse interferometry (CPI) captures the metrological advantages of quantum Hong-Ou-Mandel
(HOM) interferometry in a completely classical system. Modified HOM interferometers are the basis for a
number of seminal quantum-interference effects. Here, the corresponding modifications to CPI allow for
the first observation of classical analogues to the HOM peak and quantum beating. They also allow a new
classical technique for generating phase super-resolution exhibiting a coherence length dramatically
longer than that of the laser light, analogous to increased two-photon coherence lengths in entangled
states.
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Classical Analogue of Displaced Fock States and Quantum Correlations
in Glauber-Fock Photonic Lattices

Robert Keil,'* Armando Perez-Leija,”” Felix Dreisow,' Matthias Heinrich,' Hector Moya-Cessa.” Stefan Nolte,'
Demetrios N. Christodoulides,” and Alexander Szameit'
Unstitute of Applied Physics, Friedrich-Schiller-Universitit Jena, Max-Wien-Platz 1, 07743 Jena, Germany
2CREOL/College of Optics, University of Central Florida, Orlande, Florida, USA

'xINAUE, Coordinacion de Optica, A.P. 51 y 216, 72000 Puebla, Mexico
(Received 9 March 2011; published 31 August 2011)

Coherent states and their generalizations, displaced Fock states, are of fundamental importance to

S N 200 4 quantum optics. Here we present a direct observation of a classical analogue for the emergence of these
p r' nger‘ ( ) states from the eigenstates of the harmonic oscillator. To this end, the light propagation in a Glauber-Fock
waveguide lattice serves as equivalent for the displacement of Fock states in phase space. Theoretical

calculations and analogue classical experiments show that the square-root distribution of the coupling

parameter in such lattices supports a new family of intriguing quantum correlations not encountered in

uniform arrays. Because of the broken shift invariance of the lattice, these correlations strongly depend on

the transverse position. Consequently, quantum random walks with this extra degree of freedom may be
realized in Glauber-Fock lattices.



Lorenz-Mie scattering and qm wave scattering

The analogy has been investigated by prof. Gouesbet (Univ. of Rouen, France) in a
Optics Communications 231 (2004) 9-15 number‘ Of pUblicaTions

Cross-sections in Lorenz—Mie theory and quantum
scattering: formal analogies

G. Gouesbet * .
Gérard Goueshet
Gérard Gréhan

Labaratoire d Electromagnetisme et Systemes Particulaires ( LESP)
Unité Mixte de Recherche ( UMR) 6614, du Centre National de la Recherche Scientifigue ( CNES)
COmplece de Recherche Interprafessionnel en Aerothermachimie ( CORIA)
Institut National des Sciences Appliguées de Rowen (INSA-ROUEN) et Universite de ROUEN. BP 12,
a8 Samt Etienne du Rowrray Cedex, France
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We consider the scattering of a plane wave by a sphere (Lorenz-Mie theory) and the comesponding quantum o
problem of scattering of an illuminating plane wave beam by a radial potential U(r), and demonstrate that cross- Th eo rI es
sections in both frameworks are amenable to identical expressions, excepted for zero-order phase shift terms which are
specific of the quantum framework.

@ 2003 Elsevier B.V. All rights reserved. Optics Communications 266 (26G) TI-T15

A transparent macroscopic sphere is cross-sectionally equivalent to
a superposition of two quantum-like radial potentials

G. Gouesbet *

@ Springer

Laboratoire d Elec tromagnd linme et Sysidmes Partiadaires (LESP), Unitd Mixte de Recherche (UMR) 6604, di Centre Natiwal de v
Recherche Scientifigiee (CNRS), Complexe de Recherche Interproféssionne] en Adrothermockimie (CORIA), Institit National des Sctences Applqides de
Rowere [ INSA-Rowen) ef Universitd de Rowen, BP 12, 76 801, Saint Etlerne du Rowvray Cedex, France

Received 16 January 2006; received in revised form 13 April 206; accepted 3 May 2006 Sp r‘ i nger. (20 1 1)

Abstract

We consider two frameworks (1) the electromagetic generalized Lorene-Mie theory describing the interaction between an electro-
magnetc arbitrary shaped beam and a homopgeneous, non-magnetic sphere, with an isotropic, linear, material and (i) a quantum pen-
eralized Lorenz-Mie theory describing the interaction between a quantum eigen-arbitrary shaped beam and a quantum radial potental.
For the time being, we restrict ourselves in this paper to elastic scatlering cross-sections. We then demonstrate that a transparent mac-
roscopic sphere in the first framework is equivalent to a superposidon of two gquantum-like radial potentials in the second framework.
The restrictive meaning of “quantum-like™ will be discussed when appropriate.

© 2006 Published by Elsevier B.V.




Mie or Lorenz-Mie theory about em scattering

Electromagnetic (em) plane waves scattered by spheres
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(years 1880-1910)
orentz, Rayleigh, Mie, Debye, Thomson
Lorenz and many others
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[ Mie or Lorenz-Mie theory ]

Kerker, "The scattering of light", Academic Press (1969)
Bohren, Huffman “Absorption and Scattering of Light by small particles”, Wiley (1983)
Jackson, "Classical electrodynamics”, Wiley (1998)



Lorenz-Mie and quantum scattering: formal analogies

kd <<1 \
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cross-section | =k—22(2n+1) |+ oy
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Note:
(1) under the approximation of small scatteres, the scattering coefficients decay
exponentially,
(2) dependence on the odd order (2n+1),

\(3) dependence on the inverse of k2. /
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Quantitative analogy for elastic scattering

Opt Comm 231, 9-15 (2004)

Cross-sections in Lorenz—Mie theory and quantum

Classical

Quantitative
reletionship between
quantum and classical

cross-section

scattering: formal analogies

G. Gouesbet *
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to be compared with Eq. (13) leading to the formal
relation

dr L.
CL, == sin® g + C. (42)
y a .ﬁ._ o= | 5

Tam =i—’2’2(2| +1)sin’ 5,
1=0

Therefore, to a dassical electromagnetic scat-
termg problem of LMT, we may associate a
quantum scattering problem defined by
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Thermodynamic equilibrium as em scattering

Planck in "The theory of heat radiation”,
pag. 34, Sect. 28

"It is thus found that, when thermodynamic equilibrium of radiation exists inside of
the medium, the process of scattering produces, on the whole, no effect. The radiation
falling on a volume-element from all sides and scattered from it in all directions
behaves exactly as if it had passed directly through the volume-element without the
least modification. Every ray loses by scattering just as much energy as it regains by
the scattering of other rays.”

Feynman in "The Feynman lectures on physics”, Vol. 1
Sect. 41-2 "Thermal equilibrium of radiation”

"Let the gas atoms be very few and far between, so that we have an ideal oscillator
with no resistance except radiation resistance. Then we consider that at thermal
equilibrium the oscillator is doing two things at the same time. First, it has a mean
energy kT, and we calculate how much radiation it emits. Second, this radiation should
be exactly the amount that would result because of the fact that the light shining on
the oscillator is scattered. Since there is nowhere else the energy can go, this
effective radiation is really just scattered light from the light that is in there."



Correspondences with the blackbody

2
Oy = k—ZZ(Zn +1)s,[°
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Features of classical Lorenz-Mie cross section

Quantum theory of the blackbody

1) Spherical harmonics produce the dependence on
2n+1=2(n+1/2)

2) Fundamental spherical harmonic (monopole) causes the
additional constant fraction of 1/2 in each term of the series

3) Exponential decay approximates very well the coefficient in
case of small scatterers

4) Sum s = Zn|sn|2 transforms the series of oy into an
ensemble average if the term P, = |sn|2 /'s isvalued as
probability

Scaling of n+1/2 for the energy of the electromagnetic field

Fractional energy of one half the oscillator energy (zero-point
energy) introduced by Planck in his second theory of the
blackbody (1912) to remove inconsistencies of the first theory
(1900)

Boltzmann probability of a thermal oscillator excited to the n-
th excited level

Statistical average used to calculate the Planck thermal
excitation function or the mean photon number (Bose-Einstein
statistics)




The main argument

Idea:

the cross-section relates to the energy (o =W/ li,.), then we might expect an
analogy between classical and quantum em energies of the field contained in a

blackbody.

(1) spherical symmetry

6) isotropy (independence from the polarization of the em wave) \

(3) homogeneous medium (permittivity independent from spatial position)

(4) non-dispersive medium (constant permittivity ¢,)

@ non-magnetic medium (vacuum permeability 1) /

3

These are the hypotheses of scalar theory of electromagnetic wave propagation and we can
neglect the vectorial approach (Goodman, "Introduction to Fourier Optics”, Born & Wolf,

"Principles of Optics")




Scalar theory
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2 24 In a source-free region
Energy of the em field

[ Field and its scalar components
(

E(r) = Z Ex(r) = Z Exs(Megs VzEle(r) + kZEle(r) =0 Helmholtz equation
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Solution of the Helmholtz equation
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Energy proportional to the frequency
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Boltzmann discretization
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/ Planck's classical argument based on thermodynamics (1912)

“Uber die Begriindung des Gesetz der schwarzen Strahlung"”, Ann. d. Phys. 342, 642-656 (1912)
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Conclusions

Equivalence between scattering cross sections of classical electrodynamics
(Lorenz-Mie) and quantum theory of wave scattering suggests a close
relationship between classical and quantum physics of scattering

Thanks to the interpretation of the blackbody in terms of scattering of light, it
is possible to introduce the scalar electromagnetic theory for the radiation field
in a source-free region (empty cavity)

The energy is found proportional to the frequency (Planck hypothesis) and, what
is more, countable by means of an integer that is related to the number of
spherical harmonics (appearing in the solution of the scalar Helmholtz equation)

We can finally apply the Boltzmann statistics and follow the Planck's argument

based on thermodynamics (relationship between entropy and energy). The final

outcome is the Planck's law of a blackbody given in dependence of a parameter
that plays the role of the Planck constant




Beyond quantum-classical analogies... 13/15

Comparison with the method of Debye potentials

Energy of scalar components

2 [e'e]
P=2olof Ry n st

n=0

A, =ayEy Z|an|2=1
n=0

Energy from vectorial theory

(Panofsky & Phillips, “Classical electricity and magnetism")

grating over a sphere of large radius. The evaluation of the time average
of the scattered radiation,

dgs = %Re/[Es X H;|r? sin 0 do dp = %Re[(EeH: — EHy)r’dg,
(13~76)
The result of performing the integration indicated in Eq. (13-76) is
dU, E} [eg &
e T \/595 3@+ D(jad® + b (13-77)
1=1




