
Beyond quantum-classical analogies:
high time for agreement?

Michele Marrocco

Italian National Agency
for New Technologies, Energy and Sustainable Economic Development

(Rome, Italy)
&

University of Rome “Sapienza”
(Rome, Italy)



OutlineOutline

BriefBrief introductionintroduction toto quantumquantum--classicalclassical analogsanalogs

FocusFocus on the on the analogyanalogy betweenbetween LorenzLorenz--MieMie (LM or Mie) scattering (LM or Mie) scattering 
and and quantumquantum--mechanicalmechanical ((qmqm) ) wavewave scatteringscattering

ApplicationApplication toto the the blackbodyblackbody problemproblem
(can (can wewe conceiveconceive a a classicalclassical route route toto the the blackbodyblackbody?)?)

ConclusionsConclusions



Quantum Quantum physicsphysics emergesemerges fromfrom classicalclassical thinkingthinking
(1900 (1900 blackbodyblackbody, 1912 , 1912 vacuumvacuum fieldfield))

PlanckPlanck borrowedborrowed fromfrom BoltzmannBoltzmann the idea the idea aboutabout classicalclassical discretizationdiscretization of volume and  of volume and  
phasephase space space toto calculatecalculate thermodynamicthermodynamic functionsfunctions ((e.ge.g., ., energyenergy, , entropyentropy))
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Thermal distribution

(1925 (1925 matrixmatrix mechanicsmechanics))
BornBorn, , HeisenbergHeisenberg and and JordanJordan werewere inspiredinspired byby the connection the connection toto the the vibratingvibrating stringstring

Eq. (42) in the 
1925 paper

Quantum harmonic oscillator
(after quantization procedure) 

(1926 (1926 wavewave mechanicsmechanics) ) 
SchrSchröödingerdinger workedworked on the on the opticaloptical analogyanalogy toto achieveachieve anan interpretationinterpretation of the de of the de 

BroglieBroglie postulate postulate aboutabout mattermatter waveswaves

022 =+∇ AkA ( )[ ] 02 22 =−+∇ ψψ h/VEm 
MaxwellMaxwell eq.eq. of a of a freefree emem fieldfield SchrSchröödingerdinger eq.eq. of a of a massivemassive particleparticle



Quantum Quantum physicsphysics in in classicalclassical fashionfashion
A A lotlot of of paperspapers havehave beenbeen writtenwritten on on quantumquantum--classicalclassical analogiesanalogies

SpringerSpringer (2004)(2004)



LorenzLorenz--MieMie scattering and scattering and qmqm wavewave scatteringscattering

The The analogyanalogy hashas beenbeen investigatedinvestigated byby prof. prof. GouesbetGouesbet ((UnivUniv. of . of RouenRouen, , FranceFrance) in a ) in a 
numbernumber of of publicationspublications

SpringerSpringer (2011)(2011)



Mie or Mie or LorenzLorenz--MieMie theorytheory aboutabout emem scatteringscattering
ElectromagneticElectromagnetic ((emem) ) planeplane waveswaves scatteredscattered byby spheresspheres

((yearsyears 18801880--1910)1910)
LorentzLorentz, , RayleighRayleigh, Mie, , Mie, DebyeDebye, , ThomsonThomson, , 

LorenzLorenz and and manymany othersothers

Mie or Mie or LorenzLorenz--MieMie theorytheory

KerkerKerker, , ““The scattering of lightThe scattering of light””, , AcademicAcademic Press (1969)Press (1969)
BohrenBohren, , HuffmanHuffman ““AbsorptionAbsorption and Scattering of Light and Scattering of Light byby smallsmall particlesparticles””, , WileyWiley (1983)(1983)

JacksonJackson, , ““ClassicalClassical electrodynamicselectrodynamics””, , WileyWiley (1998)(1998)



LorenzLorenz--MieMie and quantum scattering: and quantum scattering: formalformal analogiesanalogies
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ClassicalClassical
crosscross--sectionsection

Note:Note:
(1)(1) under the under the approximationapproximation of of smallsmall scatteresscatteres, the scattering , the scattering coefficientscoefficients decaydecay
exponentiallyexponentially,,
(2) (2) dependencedependence on the on the oddodd orderorder (2n+1),(2n+1),
(3) (3) dependencedependence on the inverse of kon the inverse of k22..
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QuantumQuantum--mechanicalmechanical
crosscross--sectionsection

((partialpartial wavewave expansionexpansion))
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Quantitative Quantitative analogyanalogy forfor elasticelastic scatteringscattering
Opt Comm 231, 9-15 (2004)
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Quantitative Quantitative 
reletionshipreletionship betweenbetween
quantum and quantum and classicalclassical
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ThermodynamicThermodynamic equilibriumequilibrium asas emem scatteringscattering

“Let the gas atoms be very few and far between, so that we have an ideal oscillator 
with no resistance except radiation resistance. Then we consider that at thermal 
equilibrium the oscillator is doing two things at the same time. First, it has a mean 
energy kT, and we calculate how much radiation it emits. Second, this radiation should 
be exactly the amount that would result because of the fact that the light shining on 
the oscillator is scattered. Since there is nowhere else the energy can go, this 
effective radiation is really just scattered light from the light that is in there.”

“It is thus found that, when thermodynamic equilibrium of radiation exists inside of 
the medium, the process of scattering produces, on the whole, no effect. The radiation 
falling on a volume-element from all sides and scattered from it in all directions 
behaves exactly as if it had passed directly through the volume-element without the 
least modification. Every ray loses by scattering just as much energy as it regains by 
the scattering of other rays.”

Planck in “The theory of heat radiation”,
pag. 34, Sect. 28

Feynman in “The Feynman lectures on physics”, Vol. 1
Sect. 41-2 “Thermal equilibrium of radiation”



CorrespondencesCorrespondences withwith the the blackbodyblackbody
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Features of classical Lorenz-Mie cross section Quantum theory of the blackbody

1) Spherical harmonics produce the dependence on Scaling of               for the energy of the electromagnetic field

2) Fundamental spherical harmonic (monopole) causes the 
additional constant fraction of 1/2 in each term of the series

Fractional energy of one half the oscillator energy (zero-point 
energy) introduced by Planck in his second theory of the 
blackbody (1912) to remove inconsistencies of the first theory 
(1900)

3) Exponential decay approximates very well the coefficient  in 
case of small scatterers

Boltzmann probability of a thermal oscillator excited to the n-
th excited level

4) Sum                       transforms the series of          into an 
ensemble average if the term                         is valued as 
probability

Statistical average used to calculate the Planck thermal 
excitation function or the mean photon number (Bose-Einstein 
statistics)
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The The mainmain argumentargument

Idea:
the cross-section relates to the energy (σ =Wscatt / Iinc), then we might expect an
analogy between classical and quantum em energies of the field contained in a 
blackbody.

These are the hypotheses of scalar theory of electromagnetic wave propagation and we can 
neglect the vectorial approach (Goodman, “Introduction to Fourier Optics”, Born & Wolf, 
“Principles of Optics”)

(1) spherical symmetry

(2) isotropy (independence from the polarization of the em wave)

(3) homogeneous medium (permittivity independent from spatial position)

(4) non-dispersive medium (constant permittivity )

(5) non-magnetic medium (vacuum permeability )

ε0

µ0



Scalar Scalar theorytheory
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Energy of the em field
In a source-free region
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Field and its scalar components

Solution of the Helmholtz equation

Helmholtz equation

Energy of scalar components
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ResultsResults
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Energy proportional to the frequency
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Boltzmann discretization

Planck’s classical argument based on thermodynamics (1912)
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Ensemble averageEnergy Planck law

level n

level n-1

level n+1
nP

1−nP

“Űber die Begrűndung des Gesetz der schwarzen Strahlung“, Ann. d. Phys. 342, 642-656 (1912)

nP Probability that the field has energy between andnE 1+nE
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ConclusionsConclusions

Equivalence between scattering cross sections of classical electrodynamics
(Lorenz-Mie) and quantum theory of wave scattering suggests a close

relationship between classical and quantum physics of scattering

Thanks to the interpretation of the blackbody in terms of scattering of light, it
is possible to introduce the scalar electromagnetic theory for the radiation field

in a source-free region (empty cavity)

The energy is found proportional to the frequency (Planck hypothesis) and, what
is more, countable by means of an integer that is related to the number of 

spherical harmonics (appearing in the solution of the scalar Helmholtz equation)

We can finally apply the Boltzmann statistics and follow the Planck’s argument
based on thermodynamics (relationship between entropy and energy). The final 
outcome is the Planck’s law of a blackbody given in dependence of a parameter

that plays the role of the Planck constant



ComparisonComparison withwith the the methodmethod of of DebyeDebye potentialspotentials
Beyond quantum-classical analogies… 13/15
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Energy from vectorial theory
(Panofsky & Phillips, “Classical electricity and magnetism”)

Energy of scalar components
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