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Outline 

Brief introduction to quantum-classical analogs 

Focus on the analogy between Lorenz-Mie (LM or Mie) scattering 
and quantum-mechanical (qm) wave scattering 

Application to the blackbody problem 
(can we conceive a classical route to the blackbody?) 

Conclusions 



Quantum physics emerges from classical thinking 

(1900 blackbody, 1912 vacuum field) 
Planck borrowed from Boltzmann the idea about classical discretization of volume and  

phase space to calculate thermodynamic functions (e.g., energy, entropy) 

(1926 wave mechanics)  
Schrödinger worked on the optical analogy to achieve an interpretation of the de 

Broglie postulate about matter waves 

(1925 matrix mechanics) 
Born, Heisenberg and Jordan were inspired by the connection to the vibrating string 

Maxwell eq. of a free em field Schrödinger eq. of a massive particle 

Eq. (42) in the 

1925 paper 

Quantum harmonic oscillator 

(after quantization procedure)  

1

1




Tk/ Be
n



Thermal distribution 



Quantum physics in classical fashion 

A lot of papers have been written on quantum-classical analogies 

Springer (2004) 



Lorenz-Mie scattering and qm wave scattering 

The analogy has been investigated by prof. Gouesbet (Univ. of Rouen, France) in a 
number of publications 

Springer (2011) 



Mie or Lorenz-Mie theory about em scattering 

Electromagnetic (em) plane waves scattered by spheres 

(years 1880-1910) 
Lorentz, Rayleigh, Mie, Debye, Thomson, 

Lorenz and many others 

Mie or Lorenz-Mie theory 

Kerker, “The scattering of light”, Academic Press (1969) 
Bohren, Huffman “Absorption and Scattering of Light by small particles”, Wiley (1983) 

Jackson, “Classical electrodynamics”, Wiley (1998) 
 



Lorenz-Mie and quantum scattering: formal analogies 
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Classical 
cross-section 

Quantum-mechanical 
cross-section 

(partial wave expansion) 

Note: 
(1) under the approximation of small scatteres, the scattering coefficients decay 
exponentially, 
(2) dependence on the odd order (2n+1), 
(3) dependence on the inverse of k2. 
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Quantitative analogy for elastic scattering 

Opt Comm 231, 9-15 (2004) 
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Quantitative 
relationship between 
quantum and classical 

cross-sections 

l

l

qm sinl
k




 2

0

2
12

4






 )(



Thermodynamic  equilibrium as em scattering 

Feynman in “The Feynman lectures on physics”, Vol. 1 
Sect. 41-2 “Thermal equilibrium of radiation” 

“Let the gas atoms be very few and far between, so that we have an ideal oscillator 
with no resistance except radiation resistance. Then we consider that at thermal 
equilibrium the oscillator is doing two things at the same time. First, it has a mean 
energy kT, and we calculate how much radiation it emits. Second, this radiation should 
be exactly the amount that would result because of the fact that the light shining on 
the oscillator is scattered. Since there is nowhere else the energy can go, this 
effective radiation is really just scattered light from the light that is in there.” 

“It is thus found that, when thermodynamic equilibrium of radiation exists inside of 
the medium, the process of scattering produces, on the whole, no effect. The radiation 
falling on a volume-element from all sides and scattered from it in all directions 
behaves exactly as if it had passed directly through the volume-element without the 
least modification. Every ray loses by scattering just as much energy as it regains by 
the scattering of other rays.” 

Planck in “The theory of heat radiation”, 
pag. 34, Sect. 28 



Correspondences with the blackbody 

Features of classical Lorenz-Mie cross section Quantum theory of the blackbody 

1) Spherical harmonics produce the dependence on  Scaling of               for the energy of the electromagnetic field 

2) Fundamental spherical harmonic (monopole) causes the 

additional constant fraction of 1/2 in each term of the series 

Fractional energy of one half the oscillator energy (zero-point 

energy) introduced by Planck in his second theory of the 

blackbody (1912) to remove inconsistencies of the first theory 

(1900) 

3) Exponential decay approximates very well the coefficient  in 

case of small scatterers 

Boltzmann probability of a thermal oscillator excited to the n-

th excited level 

4) Sum                       transforms the series of          into an 

ensemble average if the term                         is valued as 

probability 

Statistical average used to calculate the Planck thermal 

excitation function or the mean photon number (Bose-Einstein 

statistics) 
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The main argument 

Idea: 
the cross-section relates to the energy ( =Wscatt / Iinc), then we might expect an 
analogy between classical and quantum em energies of the field contained in a 
blackbody. 

These are the hypotheses of scalar theory of electromagnetic wave propagation and we can 
neglect the vectorial approach (Goodman, “Introduction to Fourier Optics”, Born & Wolf, 
“Principles of Optics”) 

(1) spherical symmetry 

(2) isotropy (independence from the polarization of the em wave) 

(3) homogeneous medium (permittivity independent from spatial position) 

(4) non-dispersive medium (constant permittivity    ) 

(5) non-magnetic medium (vacuum permeability     ) 

e0 

m0 



Scalar theory 
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Energy of the em field 
In a source-free region 

Energy 

Field and its scalar components 

Solution of the Helmholtz equation 

Helmholtz equation 

Energy of scalar components 
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Results 
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Boltzmann discretization 

Planck’s classical argument based on thermodynamics (1912) 
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“Űber die Begrűndung des Gesetz der schwarzen Strahlung“, Ann. d. Phys. 342, 642-656 (1912) 

nP Probability that the field has energy between        and nE 1nE
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Conclusions 

Equivalence between scattering cross sections of classical electrodynamics 
(Lorenz-Mie) and quantum theory of wave scattering suggests a close 

relationship between classical and quantum physics of scattering 

Thanks to the interpretation of the blackbody in terms of scattering of light, it 
is possible to introduce the scalar electromagnetic theory for the radiation field 

in a source-free region (empty cavity) 

The energy is found proportional to the frequency (Planck hypothesis) and, what 
is more, countable by means of an integer that is related to the number of 

spherical harmonics (appearing in the solution of the scalar Helmholtz equation) 

We can finally apply the Boltzmann statistics and follow the Planck’s argument 
based on thermodynamics (relationship between entropy and energy). The final 
outcome is the Planck’s law of a blackbody given in dependence of a parameter 

that plays the role of the Planck constant 



Comparison with the method of Debye potentials 
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Energy of scalar components 
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