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Classical electrodynamics built on the multipole approach to the Maxwell's theory of light for the empty space has the potential for reproducing fundamental aspects
of quantum optics. Field quantization and discrete energy levels are found without the use of the correspondence principle that is fundamental to the conventional
connection between the classical field modes and quantum harmonic oscillators. After a brief summary of the conventional quantum approach based on plane waves,
Kresul’rs of the classical multipole approach are given for Fock states, zero-point energy and photon statistics of chaotic light.
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