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Abstract 

A few years ago, one of the former Editors of this journal launched “a call to action” (E. F. 

Taylor, Am. J. Phys. 71, 423 (2003)) for a revision of teaching methods in physics in order to 

emphasize the importance of the principle of least action. In response, we suggest the use of 

Hamilton’s principle of stationary action to introduce the Schrödinger equation. When 

considering the geometric interpretation of Hamilton-Jacobi theory, the real part of the action 𝑆 defines the phase of the wave function 𝑒𝑥𝑝(𝑖𝑆/ℏ) and requiring the Hamilton-Jacobi wave 

function to obey wave-front propagation (i.e., Re(𝑆) is a constant of the motion) yields the 

Schrödinger equation.  

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

1
1
9
/5

.0
0
8
3
0
1
5



 2 

I. INTRODUCTION 

The wave mechanics formulation of quantum mechanics relies on the Schrödinger 

equation and the concept of the wave function.1 The Schrödinger equation is ordinarily 

introduced without providing much detail on its conceptual foundations, which leads to some 

dissatisfaction.2 Even Schrödinger’s original conjecture was heuristic.3 Its weakness was 

underlined by Feynman: “some of the arguments he used were even false, but that does not 

matter; the only important thing is that the ultimate equation gives a correct description of 

nature”.4 In response, Feynman provided his own derivation of the Schrödinger equation that 

led him to the path integral formulation of quantum field theory.5, 6 Responding to the same 

stimulus and with the aim of a sound derivation, others have come up with various proposals 

over the last 50 years.2, 7-23 The approach presented here aims to be both simple and rigorous; 

it is based on Hamilton’s principle of stationary action which students encounter during their 

studies of Lagrangian and Hamiltonian mechanics.24 This formulation is conceptually similar 

to Schrödinger’s original proposal based on real-valued Hamilton’s functions3 and answers to 

“a call to action” by one of the former Editors of this journal emphasizing the action’s 

paramount importance in modern physics.25 To better contextualize our purpose before going 

into the details, let us make some preliminary remarks on typical approaches to developing 

Schrödinger’s picture of quantum mechanics. 

 

II. APPROCHES TO DERIVE THE SCHRŐDINGER EQUATION 

For context, here we review some familiar approaches to introducing the Schrödinger 

equation that are found in popular textbooks. The simplest claims that the Schrödinger 

equation is so well known that its derivation can be neglected in favor of its solutions to 

fundamental problems.26, 27 The equation is simply assumed as a fact or presented as a 

fundamental postulate.26, 28 Such approaches miss an opportunity to provide insight into the 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

1
1
9
/5

.0
0
8
3
0
1
5



 3 

physical meaning of the equation. Other common presentations draw their inspiration from 

plausibility arguments29-32 or from linear algebra concepts. These methods have almost 

nothing in common with the original idea developed by Schrödinger. Within this group, the 

suggestion to derive the Schrödinger equation from the time-evolution operator is worth 

mentioning for its close relationship with the Heisenberg representation.33, 34 Despite their 

pedagogical usefulness, such proposals have limitations (e.g., the restriction to a free particle, 

the assumption of a constant potential, the introduction of the composition property for the 

time-evolution operator) and therefore do not derive the Schrödinger equation in the most 

general context.  

A considerable number of authors have tried to develop an exact formulation from first 

principles.2, 7-23 Among these attempts, the use of Hamilton-Jacobi (HJ) theory24 of classical 

mechanics has attracted attention because of the guidance it provided Schrödinger in the 

discovery of his equation. But HJ theory requires the suppression of troublesome 

nonlinearities (see, for instance, the lengthy procedure in Ref. 2). On the other hand, the HJ 

approach is advantageous because it references the most important concept in advanced 

mechanics: the action.24 Within HJ theory, Hamilton’s principal function 𝑆 is equivalent to the 

action, and hereafter the two terms are used as synonyms. However, a distinction has to be 

made between the classical action 𝑆𝑐𝑙 and its quantum-mechanical counterpart 𝑆𝑞𝑚. The  

former is relevant only in the classical limit ℏ → 0.29-35 In order to properly describe quantum 

phenomena, one needs  the more general action 𝑆𝑞𝑚, which must therefore be a complex-

valued function.36. This function has the structure of a wave field whose domain includes the 

nonclassical regions of space where Im(𝑆𝑞𝑚) ≠ 0. For instance, if we consider Dirac’s 

suggestion of a wave function of the type 𝑒𝑥𝑝(𝑖𝑆𝑞𝑚/ℏ) (see Eq. (52) at page 127 of Dirac’s 

textbook34) also considered in Bransden and Joachim (see Eqs. (5.398) at page 258 of Ref. 

32), agreement between the Schrödinger equation and the HJ equation requires ℏ → 0 (see 
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Appendix A). Remarkably, the situation changes if we introduce the concept of wave-front 

propagation of 𝑒𝑥𝑝(𝑖𝑆𝑞𝑚/ℏ) in the configuration space. The constraint of wave-front 

propagation of 𝑒𝑥𝑝(𝑖𝑆𝑞𝑚/ℏ) entails a new constant of the motion, i.e., Re(𝑆𝑞𝑚), whereas Im(𝑆𝑞𝑚) is unconstrained (note that in Dirac’s suggestion the entire function 𝑆𝑞𝑚 is subject to 

a stationary condition).  We will prove that, independent of the actual value of ℏ, the classical 

action is needed to derive the Schrödinger equation. To help the reader gain familiarity with 

the concept of wave-front propagation in relation to HJ theory, we highlight the reference by 

Talman35 and also provide a summary of HJ theory in the next section.  

 

III. BRIEF SUMMARY OF HAMILTON-JACOBI THEORY 

Before discussing how to get from the classical formalism to the Schrödinger picture, we 

summarize the basics of HJ theory. Our notation follows that of Goldstein.24  

The HJ formulation of classical mechanics has the objective of finding the solution S to 

the equation 

        𝐻 (𝑞, 𝜕𝑆𝜕𝑞) + 𝜕𝑆𝜕𝑡 = 0                                                       (1) 

where H is the classical Hamiltonian and S is the Hamilton’s so-called principal function (or 

simply: the action). This function generates the canonical transformation from the n-

dimensional set of original generalized variables 𝒒 = {𝑞1, 𝑞2, … 𝑞𝑛} and 𝒑 = ∇𝑆 = {𝜕𝑆/𝜕𝑞} ={𝜕𝑆/𝜕𝑞1, 𝜕𝑆/𝜕𝑞2, … 𝜕𝑆/𝜕𝑞𝑛} to another set of generalized variables 𝑸 = {𝑄1, 𝑄2, … 𝑄𝑛} and 𝑷 = {𝑃1, 𝑃2, … 𝑃𝑛} where Hamilton’s equations of motion are simple to solve. In other words, 𝑆 is the generating function of the canonical transformation 𝑞𝑖 = 𝑞𝑖(𝑸, 𝑷, 𝑡) and 𝑝𝑖 =𝑝𝑖(𝑸, 𝑷, 𝑡) such that the mechanical problem based on the original Hamilton’s equations of 

motion 
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{ �̇�𝑖 = 𝜕𝐻𝜕𝑝𝑖�̇�𝑖 = − 𝜕𝐻𝜕𝑞𝑖                                                           (2) 

reduces to a simpler problem for an analogous set of equations of motion. The simplest set 

occurs for a constant transformed Hamiltonian 𝐾 such that 

{ �̇�𝑖 = 𝜕𝐾𝜕𝑃𝑖 = 0�̇�𝑖 = − 𝜕𝐾𝜕𝑄𝑖 = 0.                                                      (3) 

Eqs. (3) imply that 𝑄𝑖 and 𝑃𝑖 are independent of time and the problem becomes extremely 

easy to solve. It is possible to prove that the relationship between the old and new 

Hamiltonians is 𝐾 = 𝐻 + 𝜕𝑆/𝜕𝑡 and, for the usual choice of 𝐾 = 0, the outcome is the HJ 

equation Eq. (1) where the substitution of the components of the canonical momentum 𝑝𝑖 =𝜕𝑆/𝜕𝑞𝑖 has been made.24 The derivatives of 𝑆 with respect to canonical momenta give 𝑄𝑖 =𝜕𝑆/𝜕𝑃𝑖 and the inversion of this relationship for each index 𝑖 completes the canonical 

transformation 𝒒 = 𝒒(𝑸, 𝑷, 𝑡) and 𝒑 = 𝒑(𝑸, 𝑷, 𝑡). 

The beauty of the HJ approach appears in the reduction of mechanical (and vectorial) 

problems with many unknowns to a differential equation whose scalar solution 𝑆 contains all 

information about the evolution of the mechanical system under examination. But this 

elegance is of limited advantage because only a small set of problems can be solved exactly in 

the HJ context (the harmonic oscillator, Keplerian orbits and a few more). On the other hand, 

a fundamental property of the action has a more general application: the total time derivative 

of 𝑆 is the Lagrangian 𝐿 = 𝑇 − 𝑉 (with 𝑇 the kinetic energy and 𝑉 the potential energy)24 

𝑑𝑆𝑑𝑡 = 𝐿                                                              (4) 

and therefore, a constant action (i.e., Hamilton’s principle) means that the most probable 

trajectories should keep the time integral of the Lagrangian from varying between the initial 

and final time of the trajectory. The stationary value of 𝑆 was also adopted by Feynman in his 
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path integral method - a perfect example of an approach which mixes both classical and 

quantum ingredients. 

Hamilton’s principle can be regarded as the guiding star of physics, and plays a central 

role in classical mechanics24 as well as the two pillars of contemporary theoretical physics: 

general relativity (see the Einstein-Hilbert action37, 38) and quantum field theory.39, 40 HJ 

theory was employed in the early days of quantum mechanics to tackle the puzzling physics 

of photons and atoms which led to, as an example, the Bohr-Sommerfeld quantization rule. 

The foundation of wave mechanics through the HJ equation in Eq. (1) begins with 

Schrödinger’s original suggestion3 to introduce the wave function Ψ through the momentum 𝒑 = −𝑖ℏ∇Ψ/Ψ (note that, in contrast to Schrödinger’s use of Eq. (1), the imaginary unit 𝑖 has 

been made explicit). Given that the momentum is proportional to the spatial derivative of 𝑆, 

Schrödinger intuited that the variational method based on Hamilton’s principle should be 

reflected in the stationary value of the spatial integration of |Ψ|2 (see the first paper of Ref. 

[3]). However, Schrödinger originally made a mistake by attaching physical meaning only to 

the real part of Ψ. The mistake was later corrected in other communications and an interesting 

account of this episode is available in this journal.41 If we include both classical and 

nonclassical regions of 𝑆 (i.e., spatial regions where 𝑆 is purely real or has imaginary 

contributions, respectively), the action is a complex-valued function, and as argued in the next 

section, it determines Ψ as a propagating wave. Based on this, we show that one can introduce 

the Schrodinger equation to students without departing from the discoverer's initial proposal 

to use the action as a fundamental tool. This is then consistent with other well-known 

approaches (see Appendix B where the Wentzel-Kramers-Brillouin approximation and 

Feynman’s path integral formulation are discussed). 
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IV. GEOMETRIC INTERPRETATION OF HAMILTON-JACOBI THEORY AND 

THE SCHRŐDINGER EQUATION 

We begin with the introduction of the HJ wave function ΨHJ = 𝑒𝑥𝑝(𝑖𝑆/ℏ) that evolves in 

configuration space. It was mentioned before that this choice was examined by Dirac but 

without considering the consequences of a constant value of Re(𝑆). More recently, the use of ΨHJ has been popularized in the so-called quantum HJ theory suggested by Leacock and 

Padgett,42, 43 which focuses on quantum energy levels.   

The introduction of the HJ wave function has several consequences. First of all, due to ΨHJ’s wave nature, it propagates through spatial regions where 𝑆 is a complex-valued 

function. 𝑆 therefore differs from a purely classical action. It is well known that the opening 

of non-classical regions of space allows HJ theory to describe matter waves.44, 45 However, we 

do not specify the nature of 𝑆 except that we maintain 𝒑 = ∇𝑆. Note additionally that the 

action unit, ℏ, in ΨHJ is without numerical specification and, indeed, the actual value of ℏ 

does not affect the derivation of the Schrödinger equation. For a Hamiltonian which does not 

depend explicitly on time, we introduce the Hamilton’s characteristic function 𝑊 = 𝑆 + 𝐸𝑡 

which is well known to depend on spatial variables and satisfies the reduced HJ equation 

(i.e., 𝐻(𝑞, 𝜕𝑊/𝜕𝑞) = 𝐸).24 Since 𝑆 is complex, the following relationships are valid: Re(𝑊) = Re(𝑆) + 𝐸𝑡 and Im(𝑊) = Im(𝑆). After the substitution of 𝑆 = 𝑊 − 𝐸𝑡 into ΨHJ, 
the wave function can be factorized according to 

 ΨHJ = 𝜓HJ𝑒𝑥𝑝 (− 𝑖𝐸𝑡ℏ )                                              (5) 

with 𝜓HJ = 𝑒𝑥𝑝(𝑖𝑊/ℏ). Lastly, another consequence of Dirac’s suggestion to use ΨHJ is the 

appearance of an imaginary part of  𝒑 = ∇𝑆. The real part of 𝒑 is expected to be equivalent to 

the classical momentum, whereas the possibly non-zero imaginary part of 𝒑 is expected to 
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 8 

play a fundamental role in the quantum-classical transition. An example of how this works for 

the harmonic oscillator will be given in Section V. 

Within the geometric picture of HJ theory, the wave front must satisfy the classical wave 

equation: 

(∇2 − 1𝑣𝑝ℎ2 𝜕2𝜕𝑡2) ΨHJ = 0                                                  (6) 

where 𝒗𝑝ℎ is the phase velocity. This equation encodes the laws of motion of the mechanical 

system in the motion of the wave ΨHJ with velocity 𝒗𝑝ℎ calculated at 𝒒. Since the real part of 𝑆 determines the phase of ΨHJ, the surface of constant phase (whose points satisfy Hamilton’s 

principle of stationary action) can be found using the differential 

𝑑[Re(𝑆)] = ∇Re(𝑆) ∙ 𝑑𝒒 − 𝐸𝑑𝑡 = 0,                                       (7) 

where, for time-independent Hamiltonians, 𝐸 = −𝜕𝑆/𝜕𝑡 has been used. Recalling that the 

canonical momentum is 𝒑 = ∇𝑆, Eq. (7) becomes the condition 𝐸 = Re(𝒑) ∙ 𝒗𝑝ℎ. In the 

following, we suppose that Re(𝒑) and 𝒗𝑝ℎ are parallel. This very often is the case for purely 

mechanical systems (however, it is not the case for systems subjected to magnetic forces 

because the generalized momentum results from the two contributions of the mechanical 

momentum and the magnetic vector potential). Thus, the time derivative in Eq. (6) can be 

calculated explicitly thanks to Eq. (5) and, with the result 𝐸 = Re(𝒑) ∙ 𝒗𝑝ℎ, the wave equation 

becomes ∇2𝜓HJ + Re(𝒑)2ℏ2 𝜓HJ = 0.                                              (8) 

After the substitution of Re(𝐩)2 = 2𝑚(𝐸 − 𝑉) that defines Re(𝒑) as the classical 

momentum, we get the time-independent Schrödinger equation − ℏ22𝑚 ∇2𝜓HJ + 𝑉𝜓HJ = 𝐸𝜓HJ.                                              (9) 
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The time-dependent Schrödinger equation is just the outcome of the relationship between 𝜓HJ 
and the time derivative of ΨHJ calculated by means of Eq. (5) 

 
𝜕𝜕𝑡 ΨHJ = −𝑖 𝐸ℏ 𝜓HJ𝑒𝑥𝑝(−𝑖𝐸𝑡/ℏ),                                      (10) 

which, incorporated in Eq. (9), gives − ℏ22𝑚 ∇2ΨHJ + 𝑉ΨHJ = 𝑖ℏ 𝜕𝜕𝑡 ΨHJ.                                       (11) 

Eq. (11) demonstrates our thesis and shows the importance of Hamilton’s principle of 

stationary action in nonrelativistic quantum mechanics. Ultimately, these findings can be 

easily understood by students aware of Hamilton’s principle and its geometric perspective 

suggested here. As an illustrative example, the transition from the classical wave equation to 

the Schrödinger equation is demonstrated for the harmonic oscillator in the following section. 

One question is yet unanswered. If Re(𝒑) is the classical momentum, how do we 

interpret Im(𝒑) and its generating function Im(𝑆) = Im(𝑊)? To this end, let us define 𝜙 =𝑒𝑥𝑝(𝑖 Re(𝑊)/ℏ) and the amplitude of the wave function 𝐴 = 𝑒𝑥𝑝(−Im(𝑊)/ℏ). This choice 

allows the factorization of 𝜓HJ in terms of 𝜙 and 𝐴, or 𝜓HJ = 𝐴𝜙. Then, the Laplacian of 𝜓HJ 
is ∇2𝜓HJ = 𝜙∇2𝐴 + 2∇𝐴 ⋅ ∇𝜙 + 𝑖ℏ ∇2Re(𝑊)𝜓HJ − 1ℏ2 [∇Re(𝑊)]2𝜓HJ               (12) 

and its use in Eq. (8) yields 

𝜙∇2𝐴 + 2∇𝐴 ⋅ ∇𝜙 + 𝑖ℏ ∇2Re(𝑊)𝜓HJ − 1ℏ2 [∇Re(𝑊)]2𝜓HJ + Re(𝒑)2ℏ2 𝜓HJ = 0.         (13) 

But, Re(𝒑) = ∇Re(𝑊) and the last two terms of Eq. (13) cancel each other out. In the end, 

we get  

𝜙∇2𝐴 + 2∇𝐴 ⋅ ∇𝜙 + 𝑖ℏ 𝐴𝜙∇2Re(𝑊) = 0.                                (14) 
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Eq. (14) is a differential equation that establishes a relationship between Re(𝑊) and Im(𝑊). 

In other words, they are not independent from each other as in the case of a generic complex-

valued function. The search for Im(𝑊) and the calculation of corresponding wave function 

amplitude is illustrated for the fundamental example of the harmonic oscillator in the next 

section.  

 

V.  APPLICATION TO THE HARMONIC OSCILLATOR 

The nonclassical character of the wave function ΨHJ introduced in Section IV depends on 

the imaginary part of Hamilton’s functions 𝑊 and 𝑆 (Im(𝑆) = Im(𝑊)) which dictate the 

amplitude of 𝜓HJ (i.e., the spatial component of ΨHJ). On the other hand, Re(𝑆) regulates the 

phase of the wave function which, for the propagating wave front, is subject to the condition 

given in Eq. (7). In brief, Eqs. (7) and (14) are two coupled differential equations for the real 

and imaginary parts of 𝑊. In what follows, we disregard questions related to the phase. 

Instead, we dig deep into how the nonclassical character of the complex-valued Hamilton’s 

functions can be elucidated in the case of the harmonic oscillator. To this end, we show how 

Hamilton’s characteristic function of the motionless oscillator (which is purely imaginary) 

determines the shape of the wave function for the oscillator set in motion. 

We begin with a motionless oscillator. No motion implies zero classical energy, or 𝐸0𝑐𝑙 =0  𝐸 and the corresponding characteristic function 𝑊0 satisfies the reduced HJ equation 

12𝑚 ( 𝑑𝑑𝑥 𝑊0)2 + 12 𝑚𝜔2𝑥2 = 0,                                       (15) 

where 𝑥 is the oscillator’s displacement from equilibrium. Equation (15) is just a consequence 

of the general substitutions 𝐸 = −𝜕𝑆/𝜕𝑡 and 𝜕𝑆/𝜕𝑥 = 𝑑𝑊/𝑑𝑥 in Eq. (1) (note that the total 

derivative of 𝑊 is justified for the current one-dimensional problem where 𝑊 is a function of 𝑥 only).24 The solution to Eq. (15) is 
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𝑊0 = ±𝑖 12 𝑚𝜔𝑥2.                                               (16) 

The ambiguity in the sign of 𝑊0 disappears at 𝑥 = 0 when the two alternatives of Eq. (16) are 

degenerate and real. Since Eq. (15) is valid when the oscillator does not move, this is in 

perfect agreement with the trivial classical picture of the oscillator. However, this seemingly 

trivial solution reveals its intriguing consequences when ΨHJ is allowed to traverse the non-

classical regions of space where 𝑥 < 0 and 𝑥 > 0, and 𝑊0 is purely imaginary. In this case, 

the substitution of the real and imaginary parts of 𝑊0 in 𝜓HJ0 = 𝐴0𝜙0 with 𝐴0 =𝑒𝑥𝑝(−Im(𝑊0)/ℏ) and 𝜙0 = 𝑒𝑥𝑝(𝑖Re(𝑊0)/ℏ) = 1 gives 

𝜓HJ0 = 𝑒−𝑚𝜔𝑥2/(2ℏ)                                                    (17) 

where the choice of the sign of 𝑊0 has been made to ensure convergence at large distances. 

The result of Eq. (17) is remarkable because, with less effort compared to standard quantum-

mechanical procedures, we have produced the ground state wave function.  

Next, we examine the quantum harmonic oscillator energy levels 𝐸𝑛 = ℏ𝜔 (𝑛 + 12) with 

the purpose of understanding their analog in terms of the characteristic function 𝑊 used here 

to define the HJ wave function 𝜓HJ.  The scaling of the quantum energy levels demonstrates 

both a vacuum energy (or zero-point energy), as well as excitations above this labeled by 𝑛. 

The fact that the energy is separable into two independent contributions suggests that we can 

treat the full state as two noninteracting oscillating "particles" one associated with excitations 

of energy 𝑛ℏ𝜔 and one associated with the vacuum with energy ℏ𝜔/2. The analogous 

physical system within the HJ context of this work generates the factorization of the full wave 

function into 𝜓HJ = 𝐴0𝜓W, where 𝜓𝑊 is associated with excitations above the ground state.  

Given the relationship between 𝜓HJ and 𝑊, this motivates the introduction of the total 

Hamilton's characteristic function 𝑊 = 𝑊0 + 𝑊exc (i.e., the two oscillators are non-
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interacting). After the factorization of 𝜓HJ = 𝐴0𝜓W with 𝐴0 = 𝑒𝑥𝑝(𝑖𝑊0/ℏ) and 𝜓W =𝑒𝑥𝑝(𝑖𝑊exc/ℏ), and making the obvious simplification to the one-dimensional problem, the 

classical wave equation in Eq. (6) and Re(𝑝)2 = 2𝑚(𝐸 − 𝑉) yield  

𝑑2𝐴0𝑑𝑥2 𝜓W + 2 𝑑𝐴0𝑑𝑥 𝑑𝜓W𝑑𝑥 + 𝐴0 𝑑2𝜓W𝑑𝑥2 + 2𝑚ℏ2 (𝐸 − 12 𝑚𝜔2𝑥2) 𝐴0𝜓W = 0.            (18) 

The knowledge of 𝐴0 reduces Eq. (18) to 

ℏ𝑚𝜔 𝑑2𝜓W𝑑𝑥2 − 2𝑥 𝑑𝜓W𝑑𝑥 + (2𝐸ℏ𝜔 − 1) 𝜓W = 0                                 (19) 

and, solving for 𝜓W, the Hermite polynomials 𝐻𝑛(√𝑚𝜔/ℏ 𝑥) are found for values of 𝐸  
satisfying 𝐸𝑛 = ℏ𝜔(𝑛 + 1/2).46 The final result for the HJ wave functions is 

𝜓HJ = 𝑒−𝑚𝜔𝑥22ℏ  𝐻𝑛(√𝑚𝜔/ℏ 𝑥)                                      (20) 

which, up to a normalization factor, is in perfect agreement with the harmonic oscillator wave 

functions derived using standard quantum mechanical methods.  

Despite the nice conclusion of Eq. (20) one detail is still missing. We should try to 

understand the energy mismatch between the choice of 𝐸0𝑐𝑙 = 0  made earlier (see Eq. (15)) 

and the vacuum energy of 𝐸0 = ℏ𝜔/2. The mismatch disappears when the nonclassical 

regions at 𝑥 < 0 and 𝑥 > 0 are part of the wave describing the motionless oscillator. In other 

words, if  𝐸0𝑐𝑙 is the classical energy based on the particle-like understanding of the motionless 

oscillator, we expect that the wave propagation through the nonclassical regions explains the 

mismatch. In such an instance, Hamilton’s principle applied to the wave-front propagation 

yields 

 
𝑖ℏ 𝑑2𝑊0𝑑𝑥2 𝜓HJ0 − 1ℏ2 (𝑑𝑊0𝑑𝑥 )2 𝜓HJ0 + 2𝑚ℏ2 (𝐸0 − 12 𝑚𝜔2𝑥2) 𝜓HJ0 = 0,              (21) 

which simplifies to 
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12𝑚 (𝑑𝑊0𝑑𝑥 )2 + 12 𝑚𝜔2𝑥2 = 𝐸0 + 𝑖ℏ2𝑚 𝑑2𝑊0𝑑𝑥2  .                               (22) 

This is the reduced HJ equation with an extra-term containing the second derivative of 𝑊0. 

Note that Eq. (22) is analogous to Eq. (A1) in Appendix A generated from the Schrödinger 

equation. 𝑊0 was found before in Eq. (16) to be 𝑊0 = 𝑖𝑚𝜔𝑥2/2 (after the correct choice of 

the sign) and the extra-term in Eq. (22) amounts to −ℏ𝜔/2. It means that the reduced HJ 

equation is 

12𝑚 (𝑑𝑊0𝑑𝑥 )2 + 12 𝑚𝜔2𝑥2 = 𝐸0 − 12 ℏ𝜔 = 𝐸0𝑐𝑙                                (23) 

so that the choice of the vacuum energy 𝐸0 = ℏ𝜔/2 determines the zero-energy level 𝐸0𝑐𝑙 =0 used in Eq. (15). In turn, any other value of the energy must be rescaled accordingly as in 

the eigenvalues of Eq. (19). Note that the addition of a constant value to the energy has no 

dynamical meaning from the point of view of the fundamental classical laws of motion. All of 

them (Euler-Lagrangian equations, Hamilton equations, etc.) involve derivatives that cancel 

the ℏ𝜔/2 contribution coming from the wave picture summarized in Eq. (6). The energy shift ℏ𝜔/2 accounts for the fact that a traveling wave cannot be held at rest as in the case of the 

classical oscillator of Eq. (15). For this reason, any comparison between wave- and particle-

like motion should be accompanied by the energy shift of the zero level.  

The conclusion of this short example is that HJ wave propagation of Eq. (6) is compatible 

with Schrödinger picture if the momentum and wave front phase velocity are parallel, and 

Hamilton's principle is assumed. 

 

VI.  CONCLUSIONS 

We have shown that the Schrodinger equation can be obtained from Hamilton's principle 

of stationary action. The stationary action regulates the wave-front propagation of the HJ 
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wave function 𝑒𝑥𝑝(𝑖𝑆/ℏ). This procedure can be understood by students who have 

knowledge of Hamilton's principle and classical mechanics. 

 

APPENDIX A: CLASSICAL LIMIT 

The classical limit can be readily established after substitution of the wave function 𝑒𝑥𝑝(𝑖𝑆/ℏ) in the Schrödinger equation. With the help of the canonical relationships 𝑝𝑖 =𝜕𝑆/𝜕𝑞𝑖, the Schrödinger equation reduces to the following 

12𝑚 (∇𝑊)2 + 𝑉 = 𝐸 + 𝑖ℏ2𝑚 ∇2𝑊                                      (A1) 

where 𝑊 is again a complex-valued function according to Dirac’s suggestion. In the limit of 

very small ℏ, the term involving the Laplacian of 𝑊 is negligible and Eq. (A1) becomes the 

HJ equation. However, in the available derivation by Bransden and Joachim32 (pages 258-

260), the Hamilton’s functions are tacitly assumed to be real, which goes against Dirac’s 

suggestion. In this case, we would have a wave function with amplitude equal to one, an 

unnecessary oversimplification. Despite the complex nature of 𝑊, the classical limit in Eq. 

(A1) can all the same be established as long as vanishing ℏ values are accompanied by 

vanishing Im(𝑊). In the limit with both ℏ → 0 and Im(𝑊) → 0, Eq. (A1) can be solved for Re(𝑊), which is the classical characteristic function giving rise to the classical motion.24 

 

APPENDIX B: COMPARISONS WITH OTHER ACTION-BASED METHODS  

We conclude our investigation with some comparisons to other popular methods relying on 

the action and we exclude those attempts where other quantum routes are taken to achieve the 

objective of the Schrödinger picture. For instance, the method suggested by Green47 is quite 

original, but it relies on the Heisenberg representation and the corresponding use of the 
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commutator. Below we discuss two alternative programs: the Wentzel-Kramers-Brillouin 

(WKB) method and the Feynman’s path integral approach. 

The WKB program consists of searching for an approximation of the wave function 𝑒𝑥𝑝(𝑖Φ/ℏ) that solves the one-dimensional Schrödinger equation.27, 28, 31-33  Although this 

method is not concerned with the way the Schrödinger equation is justified, the wave function 𝑒𝑥𝑝(𝑖Φ/ℏ) looks very similar to the definition of the HJ wave: 𝜓HJ = 𝑒𝑥𝑝(𝑖𝑊/ℏ). Clearly, 

to establish the relationship between the two wave functions, we have to gain some insight 

into how the Φ function relates to the complex Hamilton’s characteristic function 𝑊. We will 

see that a difference exists and has decisive implications. 

The WKB approach begins with the expansion of the function Φ in powers of ℏ and in the 

classical limit (ℏ → 0) the phase of Φ satisfies the HJ equation. The approximation applies 

when only terms up to ℏ2 are used in the expansion of Φ. When this is done, the 

approximated wave function depends on the inverse of the square root of the linear 

momentum 𝑝 𝜓WKB ∝ 1√𝑝 𝑒𝑥𝑝(±𝑖𝑊𝑐𝑙/ℏ)                                             (B1) 

and a more general solution is built on the linear combination of the propagating and counter-

propagating waves generated by the choice of the sign in Eq. (B1). Notably, the classical 

Hamilton’s characteristic function 𝑊𝑐𝑙 appears in the WKB wave function where 𝑊𝑐𝑙 is a real 

function in contrast to the complex 𝑊 of 𝜓HJ. This fact explains why 𝜓WKB has singular 

behavior at the turning points where 𝑝 = 0 whereas 𝜓HJ of Section IV is regular.  

 Now, we turn to the Feynman’s path integral approach. Again, we simplify to a one-

dimensional mechanical problem where the path integral approach to the Schrödinger 

representation “is easily interpreted physically as the expression of Huygens’ principle for 

matter waves”.5 This amounts to calculating the wave function at time 𝑡 + 𝜖 according to ΨF(𝑥, 𝑡 + 𝜖) ∝ ∫ 𝑒𝑥𝑝(𝑖𝑆(𝑥, 𝑦)/ℏ)ΨF(𝑦, 𝑡)𝑑𝑦                              (B2) 
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where 𝑆(𝑥, 𝑦) coincides with Hamilton’s principal function in the classical limit and ΨF 

describes the wave front characterizing the Huygens’ surface of constant phase. Expansion 

with respect to the time parameter 𝜖 leads to an approximated result on both sides of Eq. (B2) 

(the integral is broken into several contributions arising from the infinitesimal time steps of 

duration 𝜖 connecting 𝑥 and 𝑦). Indeed, recalling Eq. (4), a small change 𝑆 is expected for the 

time variation 𝜖 during which the mechanical system goes from 𝑥 to 𝑦. Then, the action 

changes by 𝑆(𝑥, 𝑦) = 𝜖𝐿𝜖. In addition to the factor 𝜖, another parametric dependence appears 

in the Lagrangian 𝐿𝜖 as a function of coordinate 𝑦 and velocity (𝑦 − 𝑥)/𝜖. Based on this, the 

expansions of both sides of Eq. (15) give linear terms in 𝜖 and, in turn, their equality makes it 

possible to sort out the time-independent Schrödinger equation. 

In this very short summary of the Feynman’s approach to the Schrödinger equation, it is 

still clear that all the ingredients of the HJ approach of Section IV (wave-front propagation 

and Hamilton’s principle) are present here too. Both methods are rooted in the tools of 

classical mechanics which acquire a new meaning when they are extended to the quantum 

realm. As Feynman said “there is a pleasure in recognizing old things from a new point of 

view”.5 
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